心肌缺血再灌注损伤过程中Bcl-2调控自噬的研究进展

徐晓娜, 方莲花*, 杜冠华*

中国药学杂志 ›› 2014, Vol. 49 ›› Issue (5) : 353-356.

PDF(2692 KB)
PDF(2692 KB)
中国药学杂志 ›› 2014, Vol. 49 ›› Issue (5) : 353-356. DOI: 10.11669/cpj.2014.05.001
综 述

心肌缺血再灌注损伤过程中Bcl-2调控自噬的研究进展

  • 徐晓娜, 方莲花*, 杜冠华*
作者信息 +

Research Progress of Bcl-2 Regulating Autophagy in Myocardial Ischemia-Reperfusion Injury

  • XU Xiao-na, FANG Lian-hua*, DU Guan-hua*
Author information +
文章历史 +

摘要

目的 探讨心肌缺血再灌注损伤与Bcl-2家族蛋白调控自噬的关系, 阐述Bcl-2家族蛋白通过调控自噬而影响心肌缺血再灌注损伤的作用机制。方法 查阅近年来国内外心肌缺血再灌注损伤相关的Bcl-2家族蛋白调控自噬的文献, 在对文献进行分析和整理的基础上进行综述。结果与结论 在缺血早期, 心肌细胞发生适当程度的自噬能够减轻缺血导致的心肌损伤, 而在再灌注期, 过度激活的自噬能加重心肌细胞的损伤;Bcl-2家族蛋白是自噬的重要调节因子, 与自噬信号通路中其他相关因子相互作用, 在心肌缺血与再灌注损伤的两个不同时期发挥重要的作用。

Abstract

OBJECTIVE Investigate the relationship between myocardial ischemia-reperfusion injury and Bcl-2 family proteins regulating autophagy were searched, and elaborated the mechanism of Bcl-2 family proteins affecting myocardial ischemia-reperfusion injury by regulating autophagy. METHODS The literatures which related to myocardial ischemia-reperfusion injury and Bcl-2 family proteins regulating autophagy were searched. The review is finished by analyzing and organizing the literatures. RESULTS AND CONCLUSION In early ischemia, appropriate autophagy of myocardial cells can reduce the degree of ischemia-induced myocardial injury, however, in the reperfusion period, excessive activation of autophagy can aggravate myocardial cell injury. Bcl-2 family proteins are important regulation factors of autophagy, it can play an important role by interacting with other relevant factors contained in autophagy pathway during the two different periods of myocardial ischemia and reperfusion injury.

关键词

自噬 / 心肌缺血再灌注损伤 / Bcl-2蛋白家族

Key words

autophagy / myocardial ischemia-reperfusion injury / Bcl-2 protein family

引用本文

导出引用
徐晓娜, 方莲花*, 杜冠华*. 心肌缺血再灌注损伤过程中Bcl-2调控自噬的研究进展[J]. 中国药学杂志, 2014, 49(5): 353-356 https://doi.org/10.11669/cpj.2014.05.001
XU Xiao-na, FANG Lian-hua*, DU Guan-hua*. Research Progress of Bcl-2 Regulating Autophagy in Myocardial Ischemia-Reperfusion Injury[J]. Chinese Pharmaceutical Journal, 2014, 49(5): 353-356 https://doi.org/10.11669/cpj.2014.05.001
中图分类号: R965   

参考文献

[1] WANG C W, KLIONSKY D J. The molecular mechanism of autophagy. Mol Med, 2003, 9(3-4):65-76. [2] CROTZER V L, BLUM J S. Autophagy and intracellular surveillance:Modulating MHC class II antigen presentation with stress. Proc Natl Acad Sci USA, 2005, 102(22):7779-7780. [3] KAUSHIK S, BANDYOPADHYAY U, SRIDHAR S, et al. Chaperone-mediated autophagy at a glance. J Cell Sci, 2011, 124(Pt 4):495-499. [4] LOOS B, ENGELBRECHT A M, LOCKSHIN R A, et al. The variability of autophagy and cell death susceptibility:Unanswered questions. Autophagy, 2013, 9(9):1-16. [5] JAIN K, PARANANDI K S, SRIDHARAN S, et al. Autophagy in breast cancer and its implications for therapy. Am J Cancer Res, 2013, 3(3):251-265. [6] SHAW J, KIRSHENBAUM L A. Molecular regulation of autophagy and apoptosis during ischemic and non-ischemic cardiomyopathy. Autophagy, 2008, 4(4):427-434. [7] GUSTAFSSON  B. Bnip3 as a dual regulator of mitochondrial turnover and cell death in the myocardium. Pediatr Cardiol, 2011, 32(3):267-274. [8] AVIV Y, SHAW J, GANG H, et al. Regulation of autophagy in the heart:“you only live twice”. Antioxid Redox Signal, 2011, 14(11):2245-2250. [9] ZHANG J, NEY P A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ, 2009, 16(7):939-946. KARBOWSKI M, YOULE R J. Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr Opin Cell Biol, 2011, 23(4):476-482. HILL J A. Autophagy in cardiac plasticity and disease. Pediatr Cardiol, 2011, 32(3):282-289. PENG L, ZHUANG X, LIAO L, et al. Changes in cell autophagy and apoptosis during age-related left ventricular remodeling in mice and their potential mechanisms. Biochem Biophys Res Commun, 2013, 430(2):822-826. KANAMORI H, TAKEMURA G, GOTO K, et al. Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am J Physiol Heart Circ Physiol, 2011, 300(6):2261-2271. HARIHARAN N, ZHAI P, SADOSHIMA J. Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal, 2011, 14(11):2179-2190. MATSUI Y, TAKAGI H, QU X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion roles of AMP-activated protein kinase and beclin 1 in mediating autophagy. Circ Res, 2007, 100(6):914-922. GURUSAMY N, LEKLI I, GORBUNOV N V, et al. Cardioprotection by adaptation to ischaemia augments autophagy in association with BAG-1 protein. J Cell Mol Med, 2009, 13(2):373-387. JIN Y, WANG H, CUI X, et al. Role of autophagy in myocardial reperfusion injury. Front Biosci(Elite Ed), 2010, 2:1147-1153. ADAMS J M, CORY S. The Bcl-2 protein family:Arbiters of cell survival. Science, 1998, 281(5381):1322-1326. SZEGEZDI E, MACDONALD D C, CHONGHAILE T N, et al. Bcl-2 family on guard at the ER. Am J Physiol Cell Physiol, 2009, 296(5):941-953. BERRIDGE M J. The endoplasmic reticulum:A multifunctional signaling organelle. Cell Calcium, 2002, 32(5-6):235-249. KANG M H, REYNOLDS C P. Bcl-2 inhibitors:Targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res, 2009, 15(4):1126-1132. HEATH E H, CHANG N, SHORE G. The endoplasmic reticulum in apoptosis and autophagy:Role of the BCL-2 protein family. Oncogene, 2008, 27(50):6419-6433. KROEMER G, MARIO G, LEVINE B. Autophagy and the integrated stress response. Molecular Cell, 2010, 40(2):280-293. MIZUSHIMA N, LEVINE B. Autophagy in mammalian development and differentiation. Nat Cell Biol, 2010, 12(9):823-830. KANG R, ZEH H J, LOTZE M T, et al. The beclin 1 network regulates autophagy and apoptosis. Cell Death Differ, 2011, 18(4):571-580. LIANG C. Negative regulation of autophagy. Cell Death Differ, 2010, 17(12):1807-1815. PENG W, LIU Y, XU W J, et al. Role of Beclin 1-dependent autophagy in cardioprotection of ischemic preconditioning. J Huazhong Univ Sci Technol(Med Sci)(华中科技大学学报:医学版), 2013, 33(1):51-56. BELLOT G, GARCIA M R, GOUNON P, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol, 2009, 29(10):2570-2581. SUN L, WEI Q, ZHANG Y, et al. Effects of BNIP3 on autophagy of hepatoma cell:A study using BNIP3 over-expression vectors and BNIP3-shRNA vectors. J Shandong Univ(Health Sci)(山东大学学报:医学版), 2012, 50(6):70-79. SANDOVAL H, THIAGARAJAN P, DASGUPTA S K, et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature, 2008, 454(7201):232-235. LEE Y, LEE H Y, HANNA R A, et al. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol-Heart C, 2011, 301(5):1924-1931. DORN G, KIRSHENBAUM L. Cardiac reanimation:Targeting cardiomyocyte death by BNIP3 and NIX/BNIP3L. Oncogene, 2008, 27:158-167. GORDON J W, SHAW J A. Kirshenbaum LA multiple facets of NF-κB in the heart to be or not to NF-κB. Circ Res, 2011, 108(9):1122-1132. QUINSAY M N, THOMAS R L, LEE Y, et al. Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy, 2010, 6(7):855-862. GANG H, HAI Y, DHINGRA R, et al. A novel hypoxia-inducible spliced variant of mitochondrial death gene Bnip3 promotes survival of ventricular myocytes. Circ Res, 2011, 108(9):1084-1092. WANG E Y, BIALA A K, GORDON J W, et al. Autophagy in the heart:Too much of a good thing?. J Cardiovasc Pharmacol, 2012, 60(2):110-117. RIKKA S, QUINSAY M N, THOMAS R L, et al. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ, 2010, 18(4):721-731. LONSKAYA I, HEBRON M L, DESFORGES N M, et al. Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol Med, 2013, 5(8):1247-1262. DING W X, NI H M, LI M, et al. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem, 2010, 285(36):27879-27890. MAIURI M C, GALLUZZI L, MORSELLI E, et al. Autophagy regulation by p53. Curr Opin Cell Biol, 2010, 22(2):181-185. YEE K S, WILKINSON S, JAMES J, et al. PUMA-and Bax-induced autophagy contributes to apoptosis. Cell Death Differ, 2009, 16(8):1135-1145. LIN A, YAO J, ZHUANG L, et al. The FoxO-BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress. Oncogene, 2013, 273:1-12. SENGUPTA A, MOLKENTIN J D, PAIK J H, et al. FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem, 2011, 286(9):7468-7478. HARIHARAN N, MAEJIMA Y, NAKAE J, et al. Deacetylation of foxo by sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res, 2010, 107(12):1470-1482. SCHIPS T G, WIETELMANN A, HOHN K, et al. FoxO3 induces reversible cardiac atrophy and autophagy in a transgenic mouse model. Cardiovasc Res, 2011, 91(4):587-597. MAMMUCARI C, MILAM G, ROMANELLO V, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab, 2007, 6(6):458-471. XU P, DAS M, REILLY J, et al. JNK Regulates FoxO-dependent autophagy in neurons. Genes Dev, 2011, 25(4):310-322.

基金

“重大新药创制”科技重大专项(2013ZX09103-001-008, 2012ZX09103-101-078);国际科技合作专项项目(2011DFR31240)
PDF(2692 KB)

Accesses

Citation

Detail

段落导航
相关文章

/